

CHS Chemistry II Wednesday, July 6, 2022, 9:41AM

Unit	Standards	Content	Skills
Summer Work			
Introduction to Nomenclature	 AP: Chemistry (2019) AP: AP ENDURING UNDERSTANDINGS SCALE, PROPORTION, AND QUANTITY SPQ-2 Chemical formulas identify substances by their unique combination of atoms. STRUCTURE AND PROPERTIES SAP-2 The periodic table shows patterns in electronic structure and trends in atomic properties. SAP-3 Atoms or ions bond due to interactions between them, forming molecules. SAP-4 Molecular compounds are arranged based on Lewis diagrams and Valence Shell Electron Pair Repulsion (VSEPR) theory. UNIT 1 Atomic Structure and Properties BIG IDEA 2 Structure and Properties SAP How can the same element be used in nuclear fuel rods and fake diamonds? TOPIC 1.8 Valence Electrons and Ionic Compounds SAP-2 The periodic table shows patterns in electronic structure and trends in atomic properties. SAP-2.B.1 The likelihood that two elements will form a chemical bond is determined by the interactions between the valence electrons and nuclei of elements. Show details SAP-2.B.3 Typical charges of atoms in ionic compounds are governed by their location on the periodic table and the number of valence electrons. Show details UNIT 2 Molecular and Ionic Compound Structure and Properties BIG IDEA 2 Structure and Properties SAP How are molecular compounds arranged? TOPIC 2.1 Types of Chemical Bonds SAP-3 Atoms or ions bond due to interactions between them, forming molecules. 	Organic Chemistry A. Properties and Bonding in Carbon Compounds 1. Introduction to organic chemistry: hydrocarbons and functional groups (structure, nomenclature, chemical properties). Physical and chemical properties of simple organic compounds B. Nomenclature 1. Alkyl Groups 2. IUPAC Nomenclature 3. Isomers C. Other Organic Compounds 1. Alcohols • Primary, Secondary, and Tertiary Alcohols • Diols and Triols 2. Aldehydes 3. Ketones 4. Acids Complex Coordinate Nomenclature Objectives:	 4.A Explain chemical properties or phenomena (e.g., atoms or molecules) using given chemical theories, models, and representations. 4.C Explain the connection between particulate-level and macroscopic properties of a substance using models and representations. 5.A Identify quantities needed to solve a problem from given information (e.g., text, mathematical expressions, graphs, or tables).

	 SAP-3.A Explain the relationship between the type of bonding and the properties of the elements participating in the bond. Show details SAP-3.A.2 Valence electrons shared between atoms of similar electronegativity constitute a nonpolar covalent bond. For example, bonds between carbon and hydrogen are effectively nonpolar even though carbon is slightly more electronegative than hydrogen. Show details SAP-3.A.3 Valence electrons shared between atoms of unequal electronegativity constitute a polar covalent bond. a. The atom with a higher electronegativity will develop a partial negative charge relative to the other atom in the bond. b. In single bonds, greater differences in electronegativity lead to greater bond dipoles. c. All polar bonds have some ionic character, and the difference between ionic and covalent bonding is not distinct but rather a continuum. Show details UNIT 3 Intermolecular Forces and Properties BIG IDEA 1 Scale, Proportion, and Quantity SPQ How do interactions between particles influence mixtures? © 2013 The College Board, Advanced Placement 	 SPQ-2.A Explain the quantitative relationship between the elemental composition by mass and the empirical formula of a pure substance. SAP-2.A Explain the relationship between trends in atomic properties of elements and electronic structure and periodicity. SAP-2.B Explain the relationship between trends in the reactivity of elements and periodicity. SAP-3.A Explain the relationship between the type of bonding and the properties of the elements participating in the bond. 	6.A Make a scientific claim.
<u>Thermochemistry</u>	AP: Chemistry (2019) AP: AP SKILLS Models and Representations 1 Describe models and representations, including across scales.	A. <u>General aim:</u> To relate the fundamental aspects of the energy changes that accompany chemical reactions.	The student will be able to: 1.B Describe the components of

1.A Describe the components of and quantitative information from models and representations that illustrate	B. <u>Content:</u>	and quantitative information from
particulate-level properties only.	1 0 1 1	models and
1.B Describe the components of and quantitative	1. Concept of energy	
	 potential energy, 	representations
information from models and representations that illustrate	kinetic energy	that illustrate both
both particulate-level and macroscopiclevel properties.	2. first law of	particulate-level
ENDURING UNDERSTANDINGS	thermodynamics	and macroscopic
ENERGY	3. heat	level properties.
ENE-1 The speed at which a reaction occurs can be	4. work	
influenced by a catalyst.	5. state functions	
ENE-2 Changes in a substance's properties or change into	6. system and	
a different substance requires an exchange of energy	surroundings	2.D Make
ENE-3 The energy exchanged in a chemical transformation	7. endothermic and	
is required to break and form bonds.	exothermic	observations or
ENE-4 Some chemical or physical processes cannot occur	reactions	collect date from
without intervention.		representations o
ENE-6 Electrical energy can be generated by chemical	8. internal energy of	laboratory setups
reactions.	a system	or results, while
	2. Calorimetry	attending
UNIT 3 Intermolecular Forces and Properties	1. use of a	precision where
TOPIC 3.8 Representations of Solutions	calorimeter	appropriate.
SPQ-3 Interactions between intermolecular forces	2. heat capacity	
influence the solubility and separation of mixtures.	specific heat	
UNIT 6 Thermodynamics	energy released	
BIG IDEA 4 Energy ENE	as heat	
Why is energy released when water becomes an ice cube?	Enthalpy change for a	3.A Represent
How are chemical transformations that require bonds to	chemical reaction	chemical
break and form influenced by energy?	1. Hess's law	phenomena using
TOPIC 6.1 Endothermic and Exothermic Processes	2. Enthalpies of	appropriate
ENE-2 Changes in a substance's properties or change into	phase changes	graphing
a different substance requires an exchange of energy	and solution	techniques,
ENE-2.A Explain the relationship between experimental	3. standard	including correct
observations and energy changes associated with a	enthalpies of	scale and units.
chemical or physical transformation.	formation	
Show details	4. heat of reaction,	
ENE-2.A.1 Temperature changes in a system indicate	· · · · · · · · · · · · · · · · · · ·	
energy changes.	e.g., heat of	
Show details	combustion	4.C Explain the
ENE-2.A.2 Energy changes in a system can be described	5. bond dissociation	connection
as endothermic and exothermic processes such as the	energies	between
		particulate level
heating or cooling of a substance, phase changes, or		and macroscopic
chemical transformations.		properties of a
Show details	Objectives:	substance using
ENE-2.A.3 When a chemical reaction occurs, the energy of	00,000,000.	Ŭ
the system either decreases (exothermic reaction), increases (endothermic reaction), or remains the same. For		

exothermic reactions, the ene species (system) is gained by transfer from or work done by endothermic reactions, the sys	the surroundings, as heat the system. Likewise, for stem gains energy from the	ENE-2.A Explain the relationship between experimental observations and energy changes associated with a chemical or	models and representations.
surroundings by heat transfer system. <u>Show details</u> ENE-2.A.4 The formation of a exothermic or endothermic pro- relative strengths of intermole before and after the dissolution Show details	solution may be an ocess, depending on the cular/interparticle interactions	physical transformation. ENE-2.B Represent a chemical or physical transformation with an energy diagram.	5.A Identify quantities needed to solve a problem from given information (e.g., text,
TOPIC 6.2 Energy Diagrams ENE-2 Changes in a substance a different substance requires ENE-2.B Represent a chemic with an energy diagram. Show details	an exchange of energy.	ENE-2.C Explain the relationship between the transfer of thermal energy and molecular collisions.	mathematical expressions, graphs, or tables).
ENE-2.B.1 A physical or chem described with an energy diag endothermic or exothermic na <u>Show details</u> TOPIC 6.4 Heat Capacity and ENE-2 Changes in a substance a different substance requires ENE-2.D Calculate the heat q	ram that shows the ture of that process. Calorimetry ce's properties or change into an exchange of energy. absorbed or released by a poling based on the amount of	ENE-2.D Calculate the heat q absorbed or released by a system undergoing heating/cooling based on the amount of the substance, the heat capacity, and the change in temperature.	5.F Calculate, estimate, or predict an unknown quantity from known quantities by selecting and following a logical computational pathway and
Show detailsENE-2.D.1 The heating of a constraint form of energy the first form of energy the first form of heat transferred be quantified by the heat transferred be quantified by the heat transfer of heat transfer of heat. $EQN : q = mc \triangle T$ Calorimetry emeasure the transfer of heat.Show detailsENE-2.D.2 The first law of the energy is conserved in chemic	ansfer between two systems. d between two bodies may sfer equation: xperiments are used to rmodynamics states that	ENE-2.E Explain changes in the heat q absorbed or released by a system undergoing a phase transition based on the amount of the substance in moles and the molar enthalpy of the phase transition.	attending to precision (e.g., performing dimensional analysis and attending to significant figures).
Show details ENE-2.D.3 The transfer of a g energy will not produce the sa equal masses of matter with d capacities. Show details	me temperature change in	ENE-2.F Calculate the heat q absorbed or released by a system undergoing a chemical reaction in relationship to the amount of the	6.D Provide reasoning to justify a claim using chemical

ENE-2.D.4 Heating a system increases the energy of the system, while cooling a system decreases the energy of the system. <u>Show details</u> ENE-2.D.5 The specific heat capacity of a substance and	reacting substance in moles and the molar enthalpy of reaction.	principles or laws or using mathematical justification.
the molar heat capacity are both used in energy calculations. <u>Show details</u> ENE-2.D.6 Chemical systems change their energy through three main processes: heating/cooling, phase transitions, and chemical reactions.	ENE-3.A Calculate the enthalpy change of a reaction based on the average bond energies of bonds broken and formed in the reaction.	6.E Provide reasoning to justify a claim
Show details TOPIC 6.5 Energy of Phase Changes ENE-2 Changes in a substance's properties or change into a different substance requires an exchange of energy. ENE-2.E Explain changes in the heat q absorbed or released by a system undergoing a phase transition based on the amount of the substance in moles and the molar enthalpy of the phase transition.	ENE-3.B Calculate the enthalpy change for a chemical or physical process based on the standard enthalpies of formation.	using connections between particulate and macroscopic scales or levels.
Show details ENE-2.E.1 Energy must be transferred to a system to cause a substance to melt (or boil). The energy of the system therefore increases as the system undergoes a solid-to-liquid (or liquid-to-gas) phase transition. Likewise, a system releases energy when it freezes (or condenses). The energy of the system decreases as the system undergoes a liquid-to-solid (or gas-to-liquid) phase	ENE-3.C Represent a chemical or physical process as a sequence of steps.	
transition. The temperature of a pure substance remains constant during a phase change. <u>Show details</u> ENE-2.E.2 The energy absorbed during a phase change is equal to the energy released during a complementary phase change in the opposite direction. For example, the molar heat of condensation of a substance is equal to the negative of its molar heat of vaporization.	ENE-3.D Explain the relationship between the enthalpy of a chemical or physical process and the sum of the enthalpies of the individual steps.	
Show details TOPIC 6.6 Introduction to Enthalpy of Reaction ENE-2 Changes in a substance's properties or change into a different substance requires an exchange of energy. ENE-2.F Calculate the heat q absorbed or released by a system undergoing a chemical reaction in relationship to the amount of the reacting substance in moles and the molar enthalpy of reaction. Show details		

ENE-2.F.1 The enthalpy change of a reaction gives the amount of heat energy released (for negative values) or absorbed (for positive values) by a chemical reaction at constant pressure. Show details TOPIC 6.7 Bond Enthalpies ENE-3 The energy exchanged in a chemical transformation is required to break and form bonds. ENE-3.A Calculate the enthalpy change of a reaction based on the average bond energies of bonds broken and formed in the reaction. Show details ENE-3.A.1 During a chemical reaction, bonds are broken and/or formed, and these events change the potential energy of the system. Show details ENE-3.A.2 The average energy required to break all of the bonds in the reactant molecules can be estimated by adding up the average bond energies of all the bonds in the reactant molecules. Likewise, the average energy released in forming the bonds in the product molecules can be estimated. If the energy released in forming the bonds in the reaction is exothermic. If the energy required is greater than the energy required to break and form bonds. ENE-3.B Calculate the enthalpy change for a chemical or physical process based on the standard enthalpies of formation is required to break and form bonds. ENE-3.B.1 Tables of standard enthalpies of formation can be used to calculate the standard enthalpies of reactions. EQN = ΔH° reaction = $\sum \Delta H_{f}^{\circ}$ products – $\sum \Delta H_{f}^{\circ}$ reactants Show details TOPIC 6.9 Hess's Law ENE ENE-3. The energy exchanged in a chemical transformation is required to break and form bonds.	
Show details TOPIC 6.9 Hess's Law ENE	

	 ENE-3.C.1 Although the concept of "state function" is not required for the course, two principles of Hess's law should be understood. First, when a reaction is reversed, the enthalpy change stays constant in magnitude but becomes reversed in mathematical sign. Second, when two (or more) reactions are added to obtain an overall reaction, the individual enthalpy changes of each reaction are added to obtain the net enthalpy of the overall reaction. Show details ENE-3.D Explain the relationship between the enthalpy of a chemical or physical process and the sum of the enthalpies of the individual steps. Show details ENE-3.D.1 When the products of a reaction are at a different temperature than their surroundings, they exchange energy with the surroundings to reach thermal equilibrium. Thermal energy is transferred to the surroundings from the products of an exothermic reaction. Thermal energy is transferred from the surroundings to the products of an endothermic reaction. Show details © 2013 The College Board, Advanced Placement 		
<u>Kinetics</u>	 AP: Chemistry (2019) AP: AP SKILLS Representing Data and Phenomena 3 Create representations or models of chemical phenomena. 3.A Represent chemical phenomena using appropriate graphing techniques, including correct scale and units. 3.B Represent chemical substances or phenomena with appropriate diagrams or models (e.g., electron configuration). 3.C Represent visually the relationship between the structures and interactions across multiple levels or scales (e.g., particulate to macroscopic). Model Analysis 4 Analyze and interpret models and representations on a single scale or across multiple scales. 4.A Explain chemical properties or phenomena (e.g., of atoms or molecules) using given chemical theories, models, and representations. 	Chemical Kinetics A. <u>General aim:</u> To measure, alter, and predict the rates of chemical reactions. B. <u>Content:</u> 1. Reaction rates 1. definitions and units 2. instantaneous rates from plot of	The student will be able to: 1.B Describe the components of an quantitative information form models and representations that illustrate both particulate-level and macroscopic- level properties.

 4.B Explain whether a model is consistent with chemical theories. 4.C Explain the connection between particulate-level and macroscopic properties of a substance using models and representations. Mathematical Routines 5 Solve problems using mathematical relationships 5.A Identify quantities needed to solve a problem from given information (e.g., text, mathematical expressions, graphs, or tables). 	concentrations versus tie 3. factors that affect rate: concentration, temperature, catalyst 4. potential energy diagram for a reaction
5.B Identify an appropriate theory, definition, or	2. Integrated rate law
mathematical relationship to solve a problem.	1. equations relating
5.C Explain the relationship between variables within an	concentration and 5.B Identify an
equation when one variable changes.	time appropriate
5.D Identify information presented graphically to solve a	2. reaction order theory definition
problem.	determined form or mathematic
5.E Determine a balanced chemical equation for a given	the plot needed to relationship to
chemical phenomenon.	give a straight solve a problem
5.F Calculate, estimate, or predict an unknown quantity from known quantities by selecting and following a logical	3. determination of
computational pathway and attending to precision (e.g.,	overall order
performing dimensional analysis and attending to	3. Reaction mechanism
significant figures).	1. molecularity 5.C Explain the
ENDURING UNDERSTANDINGS	2. rate-determining relationship
ENERGY	step between
ENE-1 The speed at which a reaction occurs can be	3. distinguishing variables within
influenced by a catalyst.	between catalyst an equations
UNIT 5 Kinetics	and intermediates when one in mechanism variable chang
BIG IDEA 3 Transformations TRA	in mechanism variable chang 4. Collision model
Why are some reactions faster than other reactions? How long will a marble statue last?	1. activation energy:
How can a sports drink cure a headache?	Arrhenius
TOPIC 5.1 Reaction Rates	
TRA-3 Some reactions happen quickly, while others	2. molecular 5.E Determine balanced
happen more slowly and depend on reactant	orientations chemical
concentrations and temperature.	5. Catalysts: homogeneous equation for a
TRA-3.A Explain the relationship between the rate of a	and heterogeneous given chemical
chemical reaction and experimental parameters.	6. Half-life (first order for phenomena.
Show details	common nuclear)
TRA-3.A.1 The kinetics of a chemical reaction is defined as	
the rate at which an amount of reactants is converted to	
products per unit of time.	6 F Provide
	Big Idea 4: Rates of chemical reactions are determined by 6.E Provide reasoning to institute a daim

cor bal Shu TR cor oth Shu TO TR hap cor TR rate Shu the to o	A-3.A.2 The rates of change of reactant and product incentrations are determined by the stoichiometry in the anced chemical equation. <u>ow details</u> A-3.A.3 The rate of a reaction is influenced by reactant incentrations, temperature, surface area, catalysts, and er environmental factors. <u>ow details</u> PIC 5.2 Introduction to Rate Law A-3 Some reactions happen quickly, while others open more slowly and depend on reactant incentrations and temperature. A-3.B Represent experimental data with a consistent e law expression. <u>ow details</u> A-3.B.1 Experimental methods can be used to monitor amounts of reactants and/or products of a reaction and determine the rate of the reaction.	details of the molecular collisions. [CR2] Learning Objectives: 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9 Kinetics 1. Rates relationship to collisions 2. Reaction Mechanisms 3. Activation energy 4. Nature of Reactants and Interfacial Surface Area 5. Temperature and Pressure effects on Rates 6. Catalyst—Homogeneous and Heterogeneous	using connections between particulate and macroscopic scales or levels.
the to o Shu TR pro a p Shu TR ord of t is t Shu TR cal ten rea Shu TR cal ten TR TR cal TR TR TR TR TR TR TR TR TR TR TR TR TR	amounts of reactants and/or products of a reaction and determine the rate of the reaction.	Rates 6. Catalyst—Homogeneous and	
TR rea rea	Accentrations and temperature. A-3.C Identify the rate law expression of a chemical ction using data that show how the concentrations of ction species change over time. <u>ow details</u>	TRA-3.A Explain the relationship between the rate of a chemical	

TRA-3.C.1 The order of a reaction can be inferred from a graph of concentration of reactant versus time.	reaction and experimental parameters.
Show details TRA-3.C.2 If a reaction is first order with respect to a reactant being monitored, a plot of the natural log (In) of the reactant concentration as a function of time will be linear. Show details TRA-3.C.3 If a reaction is second order with respect to a reactant being monitored, a plot of the reciprocal of the	TRA-3.B Represent experimental data with a consistent rate law expression.
concentration of that reactant versus time will be linear. Show details TRA-3.C.4 The slopes of the concentration versus time data for zeroth, first, and second order reactions can be used to determine the rate constant for the reaction. Zeroth order: EQN : $[A]_t - [A]_0 = -kt$ First order: EQN : $\ln[A]_t - \ln[A]_0 = -kt$ Second order: EQN : $1/[A]_t - 1/[A]_0 = kt$	TRA-3.C Identify the rate law expression of a chemical reaction using data that show how the concentrations of reaction species change over time.
Show details TRA-3.C.5 Half-life is a critical parameter for first order reactions because the half-life is constant and related to the rate constant for the reaction by the equation: EQN : $t_{1/2} = 0.693/k$. Show details TRA-3.C.6 Radioactive decay processes provide an important illustration of first order kinetics.	TRA-4.A Represent an elementary reaction rate law expression using stoichiometry.
Show details TOPIC 5.4 Elementary Reactions TRA-4 There is a relationship between the speed of a reaction and the collision frequency of particle collisions. TRA-4.A Represent an elementary reaction as a rate law expression using stoichiometry. Show details TRA-4.A.1 The rate law of an elementary reaction can be	TRA-4.B Explain the relationship between the rate of an elementary reaction and the frequency, energy, and orientation of molecular collisions.
inferred from the stoichiometry of the molecules participating in a collision. <u>Show details</u> TRA-4.A.2 Elementary reactions involving the simultaneous collision of three or more particles are rare. <u>Show details</u> TOPIC 5.5 Collision Model TRA-4 There is a relationship between the speed of a reaction and the collision frequency of particle collisions.	TRA-4.C Represent the activation energy and overall energy change in an elementary reaction using a reaction energy profile.

TRA-4.B Explain the relationship between the rate of an elementary reaction and the frequency, energy, and orientation of molecular collisions. Show details	TRA-5.A Identify the components of a reaction mechanism.
TRA-4.B.1 For an elementary reaction to successfully produce products, reactants must successfully collide to initiate bond-breaking and bond-making events. <u>Show details</u> TRA-4.B.2 In most reactions, only a small fraction of the collisions leads to a reaction. Successful collisions have both sufficient energy to overcome energy barriers and	TRA-5.B Identify the rate law for a reaction from a mechanism in which the first step is rate limiting.
orientations that allow the bonds to rearrange in the required manner. <u>Show details</u> TRA-4.B.3 The Maxwell-Boltzmann distribution curve describes the distribution of particle energies; this distribution can be used to gain a qualitative estimate of the fraction of collisions with sufficient energy to lead to a reaction, and also how that fraction depends on	TRA-5.C Identify the rate law for a reaction from a mechanism in which the first step is not rate limiting.
temperature. <u>Show details</u> TOPIC 5.6 Reaction Energy Profile TRA-4 There is a relationship between the speed of a reaction and the collision frequency of particle collisions. TRA-4.C Represent the activation energy and overall energy change in an elementary reaction using a reaction	TRA-5.D Represent the activation energy and overall energy change in a multistep reaction with a reaction energy profile.
energy profile. <u>Show details</u> TRA-4.C.1 Elementary reactions typically involve the breaking of some bonds and the forming of new ones. <u>Show details</u> TRA-4.C.2 The reaction coordinate is the axis along which the complex set of motions involved in rearranging reactants to form products can be plotted. <u>Show details</u>	ENE-1.A Explain the relationship between the effect of a catalyst on a reaction and changes in the reaction mechanism.
TRA-4.C.3 The energy profile gives the energy along the reaction coordinate, which typically proceeds from reactants, through a transition state, to products. The energy difference between the reactants and the transition state is the activation energy for the forward reaction. Show details TRA-4.C.4 The Arrhenius equation relates the temperature dependence of the rate of an elementary reaction to the activation energy needed by molecular collisions to reach the transition state.	

Show details

TOPIC 5.7 Introduction to Reaction Mechanisms TRA-5 Many chemical reactions occur through a series of elementary reactions. These elementary reactions when combined form a chemical equation.

TRA-5.A Identify the components of a reaction mechanism. Show details

TRA-5.A.1 A reaction mechanism consists of a series of elementary reactions, or steps, that occur in sequence. The components may include reactants, intermediates, products, and catalysts.

Show details

TRA-5.A.2 The elementary steps when combined should align with the overall balanced equation of a chemical reaction.

Show details

TRA-5.A.3 A reaction intermediate is produced by some elementary steps and consumed by others, such that it is present only while a reaction is occurring.

Show details

TRA-5.A.4 Experimental detection of a reaction intermediate is a common way to build evidence in support of one reaction mechanism over an alternative mechanism. Show details

TOPIC 5.8 Reaction Mechanism and Rate Law

TRA-5 Many chemical reactions occur through a series of elementary reactions. These elementary reactions when combined form a chemical equation.

TRA-5.B Identify the rate law for a reaction from a mechanism in which the first step is rate limiting.

Show details

TRA-5.B.1 For reaction mechanisms in which each elementary step is irreversible, or in which the first step is rate limiting, the rate law of the reaction is set by the molecularity of the slowest elementary step (i.e., the ratelimiting step).

Show details

TOPIC 5.9 Steady-State Approximation

TRA-5 Many chemical reactions occur through a series of elementary reactions. These elementary reactions when combined form a chemical equation.

TRA-5.C Identify the rate law for a reaction from a mechanism in which the first step is not rate limiting. Show details

TRA-5.C.1 If the first elementary reaction is not rate limiting, approximations (such as steady state) must be made to determine a rate law expression.

Show details

TOPIC 5.10 Multistep Reaction Energy Profile TRA-5 Many chemical reactions occur through a series of elementary reactions. These elementary reactions when combined form a chemical equation.

TRA-5.D Represent the activation energy and overall energy change in a multistep reaction with a reaction energy profile.

Show details

TRA-5.D.1 Knowledge of the energetics of each elementary reaction in a mechanism allows for the construction of an energy profile for a multistep reaction. Show details

TOPIC 5.11 Catalysis

ENE-1 The speed at which a reaction occurs can be influenced by a catalyst.

ENE-1.A Explain the relationship between the effect of a catalyst on a reaction and changes in the reaction mechanism.

Show details

ENE-1.A.1 In order for a catalyst to increase the rate of a reaction, the addition of the catalyst must increase the number of effective collisions and/or provide a reaction path with a lower activation energy relative to the original reaction coordinate.

Show details

ENE-1.A.2 In a reaction mechanism containing a catalyst, the net concentration of the catalyst is constant. However, the catalyst will frequently be consumed in the ratedetermining step of the reaction, only to be regenerated in a subsequent step in the mechanism.

Show details

ENE-1.A.3 Some catalysts accelerate a reaction by binding to the reactant(s). The reactants are either oriented more favorably or react with lower activation energy. There is often a new reaction intermediate in which the catalyst is bound to the reactant(s). Many enzymes function in this manner.

Show details

ENE-1.A.4 Some catalysts involve covalent bonding between the catalyst and the reactant(s). An example is acid-base catalysis, in which a reactant or intermediate

	either gains or loses a proton. This introduces a new reaction intermediate and new elementary reactions involving that intermediate. <u>Show details</u> ENE-1.A.5 In surface catalysis, a reactant or intermediate binds to, or forms a covalent bond with, the surface. This introduces elementary reactions involving these new bound reaction intermediate(s). <u>Show details</u> © 2013 The College Board, Advanced Placement <u>AP Frameworks</u>		
Equillibrium	AP: Chemistry (2019) AP: AP UNIT 7 Equilibrium BIG IDEA 1 Scale, Proportion, and Quantity SPQ Why is a waterfall considered a spontaneous reaction? BIG IDEA 3 Transformation TRA How can reactions occur in more than one direction? How is caffeine removed from coffee? Why is food stored in a refrigerator? TOPIC 7.1 Introduction to Equilibrium TRA-6 Some reactions can occur in both forward and reverse directions, sometimes proceeding in each direction simultaneously. TRA-6.A Explain the relationship between the occurrence of a reversible chemical or physical process, and the establishment of equilibrium, to experimental observations. <u>Show details</u> TRA-6.A.1 Many observable processes are reversible. Examples include evaporation and condensation of water, absorption and desorption of a gas, or dissolution and precipitation of a salt. Some important reversible chemical processes include the transfer of protons in acid-base reactions and the transfer of electrons in redox reactions. <u>Show details</u> TRA-6.A.2 When equilibrium is reached, no observable changes occur in the system. Reactants and products are simultaneously present, and the concentrations or partial pressures of all species remain constant. TRA-6.A.3 The equilibrium state is dynamic. The forward and reverse processes continue to occur at equal rates, resulting in no net observable change.	Equilibrium Key Concepts: 1. Relate the expression for K to the corresponding equation for the chemical reaction 2. Calculate K knowing • appropriate K values for other reactions • all the equilibrium partial pressures • all the original and one equilibrium partial pressure 3. Use LeChâtelier's principle to determine what will happen when the conditions on an equilibrium system are changed	The student will be able to: 3.A Represent chemical phenomena using appropriate graphing techniques, including correct scale and units. 3.C Represent visually the relationship between the structures and interactions across multiple levels or scales (e.g., particulate to macroscopic).

Show details TRA-6.A.4 Graphs of concentration, partial press rate of reaction versus time for simple chemical can be used to understand the establishment of equilibrium. Show details TOPIC 7.2 Direction of Reversible Reactions TRA-6 Some reactions can occur in both forwar reverse directions, sometimes proceeding in ea simultaneously. TRA-6.B Explain the relationship between the d which a reversible reaction proceeds and the re	extions micalN2O4-NO2 equilibrium systemmodel or representation describes the connection between particulate-level properties and macroscopic properties.d irection• Determination of K • Applications of the equilibrium constant • Effect of changes inmodel or representation describes the connection between particulate-level properties and macroscopic properties.
of the forward and reverse reactions. <u>Show details</u> TRA-6.B.1 If the rate of the forward reaction is g the reverse reaction, then there is a net converse reactants to products. If the rate of the reverse re- greater than that of the forward reaction, then the conversion of products to reactants. An equilibrium reached when these rates are equal. <u>Show details</u> TOPIC 7.3 Reaction Quotient and Equilibrium O TRA-7 A system at equilibrium depends on the relationships between concentrations, partial pr chemical species, and equilibrium constant K. TRA-7.A Represent the reaction quotient Qcor O reversible reaction, and the corresponding equi	of ion is is a net state isObjectives:Discrete quantities needed to solve a problem from given information (e.g., text, mathematical expressions, graphs, or tables).tantTRA-6.A Explain the relationship between the occurrence of a reversible chemical or physical process, and the establishment of equilibrium, to experimental observations.TRA-6.A Explain the relationship given information (e.g., text, mathematical expressions, graphs, or tables).
expressions $K_c = Q_{cor} K_P = Q_P$. <u>Show details</u> TRA-7.A.1 The reaction quotient Q_c describes the concentrations of reaction species at any time. phase reactions, the reaction quotient may inster written in terms of pressures as Q_P . The reaction tends toward the equilibrium constant such that equilibrium $K_c = Q_c$ and $K_P = Q_P$. As examples, f	be between the direction in which a reversible reaction proceeds and the relative rates of the forward one variable
reaction aA + bB \rightleftharpoons cC +dD the equilibrium expression for (K _c , Q _c) is EQN : K _c = $\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$ and that for (K _P , Q _P)is EQN : K _p = $\frac{(P_{C})^{c}(P_{D})^{d}}{(P_{A})^{a}(P_{B})^{b}}$ Show details	TRA-7.A Represent the reaction quotient or Q_p , for a reversible reaction, and the corresponding equilibrium expressions $K_c=Q_c$ or $K_p=Q_p$. 5.F Calculate, estimate, or predict an unknown quantity from known quantities by

		1
 TRA-7.A.2 The reaction quotient does not include substances whose concentrations (or partial pressures) are independent of the amount, such as for solids and pure liquids. <u>Show details</u> TOPIC 7.4 Calculating the Equilibrium Constant TRA-7.A system at equilibrium depends on the 	TRA-7.B Calculate K _c or K _p based on experimental observations of concentrations or pressure at equilibrium.	selecting and following a logical computational pathway and attending to precision (e.g., performing
relationships between concentrations, partial pressures of chemical species, and equilibrium constant K. TRA-7.B Calculate K _c or K _P based on experimental observations of concentrations or pressures at equilibrium. <u>Show details</u> TRA-7.B.1 Equilibrium constants can be determined from	TRA-7.C Explain the relationship between very large or very small values of K and the relative concentrations of chemical species at equilibrium.	dimensional analysis and attending to significant figures).
experimental measurements of the concentrations or partial pressures of the reactants and products at		6.D Provide reasoning to
equilibrium. <u>Show details</u> TOPIC 7.5 Magnitude of the Equilibrium Constant TRA-7 A system at equilibrium depends on the relationships between concentrations, partial pressures of chemical species, and equilibrium constant K. TRA-7.C Explain the relationship between very large or very small values of K and the relative concentrations of chemical species at equilibrium.	TRA-7.D Represent a multistep process with an overall equilibrium expression, using the constituent K expressions for each individual reaction.	justify a claim using chemical principles or laws, or using mathematical justification.
Show detailsTRA-7.C.1 Some equilibrium reactions have very large Kvalues and proceed essentially to completion. Others havevery small K values and barely proceed at all.Show detailsTOPIC 7.6 Properties of the Equilibrium ConstantTRA-7 A system at equilibrium depends on therelationships between concentrations, partial pressures ofchemical species, and equilibrium constant K.	TRA-7.E Identify the concentrations or partial pressures of chemical species at equilibrium based on the initial conditions and equilibrium constant.	6.F Explain the connection between experimental results and chemical concepts, processes, or theories.
 TRA-7.D Represent a multistep process with an overall equilibrium expression, using the constituent K expressions for each individual reaction. <u>Show details</u> TRA-7.D.1 When a reaction is reversed, K is inverted. <u>Show details</u> TRA-7.D.2 When the stoichiometric coefficients of a 	TRA-7.F Represent a system undergoing a reversible reaction with a particulate model.	theories.
reaction are multiplied by a factor c, K is raised to the power c. Show details	TRA-8.A Identify the response of a system at equilibrium to an	

TRA-7.D.3 When reactions are added together, the K of the resulting overall reaction is the product of the K's for the reactions that were summed.	external stress, using Le Châtelier's principle	
Show details TRA-7.D.4 Since the expressions for K and Q have		
identical mathematical forms, all valid algebraic manipulations of K also apply to Q. <u>Show details</u> TOPIC 7.7 Calculating Equilibrium Concentrations TRA-7 A system at equilibrium depends on the relationships between concentrations, partial pressures of chemical species, and equilibrium constant K.	TRA-8.B Explain the relationship between Q, K, and the direction in which a reversible reaction will proceed to reach equilibrium.	
TRA-7.E Identify the concentrations or partial pressures of chemical species at equilibrium based on the initial conditions and the equilibrium constant. Show details		
TRA-7.E.1 The concentrations or partial pressures of species at equilibrium can be predicted given the balanced reaction, initial concentrations, and the appropriate K. Show details		
TOPIC 7.8 Representations of Equilibrium TRA-7 A system at equilibrium depends on the relationships between concentrations, partial pressures of		
chemical species, and equilibrium constant K. TRA-7.F Represent a system undergoing a reversible reaction with a particulate model. Show details		
TRA-7.F.1 Particulate representations can be used to describe the relative numbers of reactant and product particles present prior to and at equilibrium, and the value of the equilibrium constant.		
Show details TOPIC 7.9 Introduction to Le Châtelier's Principle TRA-8 Systems at equilibrium respond to external stresses to offset the effect of the stress.		
TRA-8.A Identify the response of a system at equilibrium to an external stress, using Le Châtelier's principle. <u>Show details</u> TRA-8.A.1 Le Châtelier's principle can be used to predict		
the response of a system to stresses such as addition or removal of a chemical species, change in temperature, change in volume/ pressure of a gas-phase system, or dilution of a reaction system.		

	 TRA-8.A.2 Le Châtelier's principle can be used to predict the effect that a stress will have on experimentally measurable properties such as pH, temperature, and color of a solution. <u>Show details</u> TOPIC 7.10 Reaction Quotient and Le Châtelier's Principle TRA-8 Systems at equilibrium respond to external stresses to offset the effect of the stress. TRA-8.B Explain the relationships between Q, K, and the direction in which a reversible reaction will proceed to reach equilibrium. <u>Show details</u> TRA-8.B.1 A disturbance to a system at equilibrium causes Q to differ from K, thereby taking the system out of equilibrium. The system responds by bringing Q back into agreement with K, thereby establishing a new equilibrium state. <u>Show details</u> TRA-8.B.2 Some stresses, such as changes in concentration, cause a change in Q only. A change in temperature causes a change in K. In either case, the concentrations or partial pressures of species redistribute to bring Q and K back into equality. <u>Show details</u> © 2013 The College Board, Advanced Placement 		
Acid- Base Equillibrium	AP: Chemistry (2019) AP: AP UNIT 4 Chemical Reactions TOPIC 4.6 Introduction to Titration SPQ-4 When a substance changes into a new substance, or when its properties change, no mass is lost or gained. SPQ-4.B Identify the equivalence point in a titration based on the amounts of the titrant and analyte, assuming the titration reaction goes to completion. <u>Show details</u> SPQ-4.B.1 Titrations may be used to determine the concentration of an analyte in solution. The titrant has a known concentration of a species that reacts specifically and quantitatively with the analyte. The equivalence point of the titration occurs when the analyte is totally consumed by the reacting species in the titrant. The equivalence point	Lecture Outline 1. Brønsted-Lowry acid-base model 2. The ion product of water 3. pH and pOH 4. Weak acids and their equilibrium constants 5. Weak bases and their equilibrium constants	The student will be able to: 2.D Make observations or collect date from representations of laboratory setups or results, while attending to precision where appropriate.

is often indicated by a change in a property (such as color) that occurs when the equivalence point is reached. This observable event is called the endpoint of the titration.	6. Acid-base properties of salt solutions	5 P Identify on
Show details TOPIC 4.7 Types of Chemical Reactions TRA-2 A substance can change into another substance through different processes, and the change itself can be classified by the sort of processes that produced it. TRA-2.A Identify a reaction as acidbase, oxidation- reduction, or precipitation.	7. Extending the concept of acids and bases: the Lewis model	5.B Identify an appropriate theory, definition or mathematica relationship to solve a problem
Show details TRA-2.A.1 Acid-base reactions involve transfer of one or more protons between chemical species.	Key Concepts	5.C Explain the
Show details	1. Classify a substance as a	relationship
TOPIC 4.8 Introduction to Acid-Base Reactions	Brønsted-Lowry acid or base and	between
TRA-2A substance can change into another substance	write the net ionic equation to	variables within
through different processes, and the change itself can be classified by the sort of processes that produced it.	support the classification	an equation wi
TRA-2.B Identify species as Brønsted-Lowry acids, bases,	2. Given [H⁺], [OH⁻], pH or pOH,	changes.
and/or conjugate acid-base pairs, based on proton-transfer	calculate the three other	
involving those species. Show details	quantities	
TRA-2.B.1 By definition, a Brønsted-Lowry acid is a proton		5.D Identify
donor and a Brønsted-Lowry base is a proton acceptor.	3. Given the pH and original	information
Show details	concentration of a weak acid, calculate K _a	presented
TRA-2.B.2 Only in aqueous solutions, water plays an	Calculate Na	graphically to
important role in many acid-base reactions, as its	4. Given the K₄and original	solve a proble
molecular structure allows it to accept protons from and	concentration of a weak acid,	
donate protons to dissolved species. Show details	calculate [H ⁺]	
TRA-2.B.3 When an acid or base ionizes in water, the		
conjugate acid-base pairs can be identified and their	5. Given the K₀and original	5.F Calculate,
relative strengths compared. Rationale: Lewis acid-base	concentration of a weak base,	estimate, or
concepts are important ideas for organic chemistry.	calculate [OH ⁻]	predict an unknown quan
However, as the emphasis in AP Chemistry is on reactions		from known
in aqueous solution, these concepts will not be examined.	6. Given Kafor a weak acid,	quantities by
Show details	calculate K _b for its conjugate base	selecting an
UNIT 8 Acids and Bases BIG IDEA 2 Structure and Properties SAP	(or vice-versa).	following a log
How are reactions involving acids and bases related to pH?		computational
How does your body maintain pH balance?	1. 7. Predict whether a salt	pathway and
TOPIC 8.1 Introduction to Acids and Bases	will be acidic, basic or	attending to
SAP-9 The chemistry of acids and bases involves	neutral. 2. 8. Understand the	precision (e.g.,
reversible proton-transfer reactions, with equilibrium		performing

concentrations being related to the strength of the acids and bases involved. SAP-9.A Calculate the values of pH and pOH, based on K_w and the concentration of all species present in a neutral solution of water.	differences between Lewis and Brønsted- Lowry acids and bases	analysis and attending to significant figures).
Show details SAP-9.A.1 The concentrations of hydronium ion and hydroxide ion are often reported as pH and pOH, respectively	Objectives:	6.C Support a claim with
$\begin{split} & EQN:pH=-\log[H3O^+]\\ & EQN:pOH=-\log[OH^-]\\ & The terms "hydrogen ion" and "hydronium ion" and the symbols H+(aq) and H3O+(aq) are often used interchangeably for the aqueous ion of hydrogen.\\ & \mathsf{Hydronium ion and H3O^+(aq) are preferred, but H+(aq) is also accepted on the AP Exam.\\ & \underline{Show details}\\ & SAP-9.A.2 \text{ Water autoionizes with an equilibrium constant} \end{split}$	SPQ-4.B Identify the equivalence point in a titration based on the amounts of the titrant and analyte, assuming the titration reaction goes to completion.	evidence from representations or models at the particulate level, such as the structure of atoms and/or molecules.
Kw. EQN : $K_w = [H_3O^+][OH^-] = 1.0 \times 10^{-14} \text{ at } 25^\circ \text{ C}$ Show details SAP-9.A.3 In pure water, pH = pOH is called a neutral solution. At 25°C, pKw = 14.0 and thus pH = pOH = 7.0. EQN:PKw = 14.0 = pH + pOH at 25° C Show details	TRA-2.A Identify a reaction as acid-base, oxidation-reduction, or precipitation.	
SAP-9.A.4 The value of Kw is temperature dependent, so the pH of pure, neutral water will deviate from 7.0 at temperatures other than 25°C. TOPIC 8.2 pH and pOH of Strong Acids and Bases SAP-9 The chemistry of acids and bases involves reversible proton-transfer reactions, with equilibrium concentrations being related to the strength of the acids and bases involved.	TRA-2.B Identify species as Brønsted-Lowry acids, bases, and/or conjugate acid-base pairs, based on proton-transfer involving those species.	
SAP-9.B Calculate pH and pOH based on concentrations of all species in a solution of a strong acid or a strong base. <u>Show details</u> SAP-9.B.1 Molecules of a strong acid (e.g., HCI, HBr,HI, HCIO ₄ , H ₂ SO ₄ and HNO ₃) will completely ionize in aqueous solution to produce hydronium ions. As such, the concentration of H ₃ O ⁺ in a strong acid solution is equal to the initial concentration of the strong acid, and thus the pH	SAP-9.A Calculate the values of pH and pOH, based on Kw and the concentration of all species present in a neutral solution of water.	
of the strong acid solution is easily calculated. <u>Show details</u>	SAP-9.B Calculate pH and pOH based on concentrations of all	

SAP-9.B.2 When dissolved in solution, strong bases (e.g., group I and II hydroxides) completely dissociate to produce hydroxide ions. As such, the concentration of OH- in a strong base solution is equal to the initial concentration of	species in a solution of a strong acid or a strong base.	
the strong base solution is equal to the initial concentration of base solution is easily calculated. <u>Show details</u> TOPIC 8.3 Weak Acid and Base Equilibria SAP-9 The chemistry of acids and bases involves reversible proton-transfer reactions, with equilibrium concentrations being related to the strength of the acids and bases involved.	SAP-9.C Explain the relationship among pH, pOH, and concentrations of all species in a solution of a monoprotic weak acid or weak base.	
SAP-9.C Explain the relationship among pH, pOH, and concentrations of all species in a solution of a monoprotic weak acid or weak base. <u>Show details</u> SAP-9.C.1 Weak acids react with water to produce hydronium ions. However, molecules of a weak acid will only partially ionize in this way. In other words, only a small percentage of the molecules of a weak acid are ionized in a solution. Thus, the concentration of H_3O^+ is much less than	SAP-9.D Explain the results from the titration of a mono- or polyprotic acid or base solution, in relation to the properties of the solution and its components.	
the initial concentration of the molecular acid, and the vast majority of the acid molecules remain un-ionized. <u>Show details</u> SAP-9.C.2 A solution of a weak acid involves equilibrium between an un-ionized acid and its conjugate base. The equilibrium constant for this reaction is Ka, often reported as pKa. The pH of a weak acid solution can be determined from the initial acid concentration and the pKa.	SAP-9.F Explain the relationship between the strength of an acid or base and the structure of the molecule or ion.	
$\begin{split} & EQN: K_a = \frac{[H_3O^+A^-]}{HA} \\ & EQN: pK_a = -\logK_a \\ & Show \ details \\ & SAP-9.C.3 \ Weak \ bases \ react \ with \ water \ to \ produce \\ & hydroxide \ ions \ in \ solution. \ However, \ ordinarily \ just \ a \ small \\ & \mathsf{percentage \ of \ the \ molecules \ of \ a \ weak \ base \ in \ solution \ will \\ & \mathsf{ionize \ in \ this \ way. \ Thus, \ the \ concentration \ of \ OH- \ in \ the \\ & \mathsf{solution \ does \ not \ equal \ the \ initial \ concentration \ of \ the \ base, \\ & \mathsf{and \ the \ vast \ majority \ of \ the \ base \ molecules \ remain \ un-ionized. \end{split$	SAP-10.A Explain the relationship between the predominant form of a weak acid or base in solution at a given pH and the pKa of the conjugate acid or the pKb of the conjugate base.	
Show details SAP-9.C.4 A solution of a weak base involves equilibrium between an un-ionized base and its conjugate acid. The equilibrium constant for this reaction is Kb, often reported as pKb. The pH of a weak base solution can be determined		

from the initial base concentration and the pKb. $EQN: K_b = \frac{[OH^-[HB^+}{[B]}$

 $EQN : pK_b = -\log K_b$

Show details

SAP-9.C.5 The percent ionization of a weak acid (or base) can be calculated from its pKa (pKb) and the initial concentration of the acid (base).

TOPIC 8.5 Acid-Base Titrations

SAP-9 The chemistry of acids and bases involves reversible proton-transfer reactions, with equilibrium concentrations being related to the strength of the acids and bases involved.

SAP-9.E Explain results from the titration of a mono- or polyprotic acid or base solution, in relation to the properties of the solution and its components.

Show details

SAP-9.E.1 An acid-base reaction can be carried out under controlled conditions in a titration. A titration curve, plotting pH against the volume of titrant added, is useful for summarizing results from a titration.

SAP-9.E.2 At the equivalence point, the number of moles of titrant added is equal to the number of moles of analyte originally present. This relationship can be used to obtain the concentration of the analyte. This is the case for titrations of strong acids/bases and weak acids/bases.

Show details

SAP-9.E.3 For titrations of weak acids/bases, it is useful to consider the point halfway to the equivalence point, that is, the half-equivalence point. At this point, there are equal concentrations of each species in the conjugate acid-base pair, for example, for a weak acid [HA] = [A–]. Because pH = P^{K_a} when the conjugate acid and base have equal concentrations, the P^{K_a} can be determined from the pH at the halfequivalence point in a titration.

Show details

SAP-9.E.4 For polyprotic acids, titration curves can be used to determine the number of acidic protons. In doing so, the major species present at any point along the curve can be identified, along with the pKa associated with each proton in a weak polyprotic acid.

Show details

TOPIC 8.6 Molecular Structure of Acids and Bases SAP-9 The chemistry of acids and bases involves reversible proton-transfer reactions, with equilibrium concentrations being related to the strength of the acids and bases involved.

SAP-9.F Explain the relationship between the strength of an acid or base and the structure of the molecule or ion. Show details

SAP-9.F.1 The protons on a molecule that will participate in acid-base reactions, and the relative strength of these protons, can be inferred from the molecular structure. a. Strong acids (such as HCI, HBr, HI,

HCIO₄, H₂SO₄ and HNO₃) have very weak conjugate bases that are stabilized by electronegativity, inductive effects, resonance, or some combination thereof.

b. Carboxylic acids are one common class of weak acid.c. Strong bases (such as group I and II hydroxides) have very weak conjugate acids.

d. Common weak bases include nitrogenous bases such as ammonia as well as carboxylate ions.

e. Electronegative elements tend to stabilize the conjugate base relative to the conjugate acid, and so increase acid strength.

Show details

TOPIC 8.7 pH and PKa

SAP-10 A buffered solution resists changes to its pH when small amounts of acid or base are added.

SAP-10.A Explain the relationship between the

predominant form of a weak acid or base in solution at a given pH and the pKa of the conjugate acid or the pKb of the conjugate base.

Show details

SAP-10.A.1 The protonation state of an acid or base (i.e., the relative concentrations of HA and A–) can be predicted by comparing the pH of a solution to the pKa of the acid in that solution. When solution pH < acid pKa, the acid form has a higher concentration than the base form. When solution pH > acid pKa, the base form has a higher concentration than the base form has a higher concentration than the base form has a higher concentration than the base form.

Show details

SAP-10.A.2 Acid-base indicators are substances that exhibit different properties (such as color) in their protonated versus deprotonated state, making that property respond to the pH of a solution.

Show details

© 2013 The College Board, Advanced Placement

AP Frameworks

Acid base reactions and buffers	AP: Chemistry (2019) AP: AP UNIT 8 Acids and Bases BIG IDEA 2 Structure and Properties SAP How are reactions involving acids and bases related to pH? How does your body maintain pH balance? TOPIC 8.4 Acid-Base Reactions and Buffers SAP-9 The chemistry of acids and bases involves reversible proton-transfer reactions, with equilibrium concentrations being related to the strength of the acids and bases involved. SAP-9.D Explain the relationship among the concentrations of major species in a mixture of weak and strong acids and bases. Show details SAP-9.D.1 When a strong acid and a strong base are mixed, they react quantitatively in a reaction represented by the equation: $H^+(aq) + OH^-(aq) \rightarrow H_2O(1)$ The pH of the resulting solution may be determined from the concentration of excess reagent. Show details	 Key concepts 1. Calculate the pH of a buffer as initially prepared. 2. Choose a buffer for a specified pH. 3. Determine whether a combination of a strong acid/base and its salt is a buffer (or not). 4. Calculate the pH of a buffer after the addition of strong acid or base. 5. Determine the color of an indicator at a specific pH, given its Ka. 6. Calculate the pH during an indicator at a specific pH during an indicator at a sp	The student will be able to: 5.F Calculate, estimate, or predict an unknown quantity from known quantities by selecting an following a logical computational pathway and attending to precision (e.g., performing dimensional analysis and attending to significant figures).
	SAP-9.D.2 When a weak acid and a strong base are mixed, they react quantitatively in a reaction represented by the equation: $HA(aq) + OH^{-}(aq) \rightleftharpoons A^{-}(aq)H_2O(I)$ If the weak acid is in excess, then a buffer solution is formed, and the pH can be determined from the Henderson-Hasselbalch (H-H) equation (see SAP-10.C.1). If the strong base is in excess, then the pH can be determined from the moles of excess hydroxide ion and the total volume of solution. If they are equimolar, then the (slightly basic) pH can be determined from the equilibrium represented by the equation: $A^{-}(aq) + H_2O(I) \rightleftharpoons HA(aq) + OH^{-}(aq)$ SAP-9.D.3 When a weak base and a strong acid are mixed, they will react quantitatively in a reaction represented by the equation: $B(aq) + H_3O^+(aq) \rightleftharpoons HB^+(aq) + H_2O(I)$ If the weak base is in excess, then a buffer solution is formed, and the pH can be determined from the H-H equation. If the strong acid is in excess, then the pH can be determined from the moles of excess hydronium ion and the total volume of solution. If they are equimolar, then the	 acid-base titration. 7. Choose the proper indicator for a titration. 8. Calculate K for an acid-base reaction. Objectives: SAP-9.D Explain the relationship among the concentrations of major species in a mixture of weak and strong acids and bases. SAP-10.B Explain the relationship between the ability of a buffer to 	 6.D Provide reasoning to justify a claim using chemical principles or laws, or using mathematical justification. 6.G Explain how potential sources of experimental error may affect the experimental results.

(slightly acidic) pH can be determined from the equilibrium represented by the equation: $HB^+(aq) + H_2O(I) \rightleftharpoons B(aq) + H_3O^+(aq)$ Show details stabilize pH and the reactions that occur when an acid or a base is added to a buffered solution.	
SAP-9.D.4 When a weak acid and a weak base are mixed,	
SAP-9.D.4 When a weak acid and a weak base are mixed, they will react to an equilibrium state whose reaction may be represented by the equation: $HA(aq) + B(aq) = A^{-1}(aq) + HB^{+}(aq)$ Show details TOPIC 8.8 Properties of Buffers SAP-10.8 Explain the relationship between the ability of a buffer solution based on the identity and concentrations of the conjugate acid-base pair used to a buffer d solution contains a large concentration of both members in a conjugate acid-base and the relative concentration of both members in a conjugate acid-base pair. The conjugate acid reacts with added base and the conjugate base concentration of both members in a conjugate acid-base pair. The conjugate acid reacts with added base and the conjugate base components of the solution. Show details TOPIC 8.9 Henderson- Hasselbalch Equation SAP-10.C 1 dentify the pH of a buffer to stabilize pH. Show details SAP-10.C 1 The pH of the buffer is related to the pKa of the acid and the concentration ratio of the conjugate acid-base pair used to create the buffer. Show details SAP-10.C 1.1 The pH of the buffer is related to the pKa of the acid and the concentration ratio of the conjugate acid-base pair used to create the buffer. Show details SAP-10.C 1.1 The pH of the differ is related to the pKa of the acid and the concentration ratio of the conjugate acid-base pair used to create the buffer. Show details SAP-10.C 1.1 The pH of the differ is related to the pKa of the acid and the concentration ratio of the conjugate acid-base pair used to create the buffer. EQN : pH + log $\left \frac{A}{ HA} \right $ Show details	

	TOPIC 8.10 Buffer Capacity SAP-10 A buffered solution resists changes to its pH when small amounts of acid or base SAP-10.D Explain the relationship between the buffer capacity of a solution and the relative concentrations of the conjugate acid and conjugate base components of the solution. <u>Show details</u> SAP-10.D.1 Increasing the concentration of the buffer components (while keeping the ratio of these concentrations constant) keeps the pH of the buffer the same but increases the capacity of the buffer to neutralize added acid or base. <u>Show details</u> SAP-10.D.2 When a buffer has more conjugate acid than base, it has a greater buffer capacity for addition of added base than acid. When a buffer has more conjugate base than acid, it has a greater buffer capacity for addition of added acid than base. <u>Show details</u> © 2013 The College Board, Advanced Placement <u>AP Frameworks</u>		
<u>Common ion</u> <u>effect</u>	 AP: Chemistry (2019) AP: AP UNIT 4 Chemical Reactions BIG IDEA 3 Transformations TRA What are the processes related to changes in a substance? TOPIC 4.2 Net lonic Equations TRA-1 A Substance that changes its properties, or that changes into a different substance, can be represented by chemical equations. TRA-1.B Represent changes in matter with a balanced chemical or net ionic equation: a. For physical changes. b. For given information about the identity of the reactants and/or product. c. For ions in a given chemical reaction. Show details TOPIC 4.7 Types of Chemical Reactions TRA-2 A substance can change into another substance through different processes, and the change itself can be classified by the sort of processes that produced it. 	 Lecture Outline 1. Complex ion equilibria; formation constant (Kf) 2. Solubility; solubility product constant (Ksp) 3. Precipitate formation 4. Dissolving precipitates Key concepts: Relate Kf to the ratio of concentration of complex ion to metal ion Write the Ksp expression for any insoluble ionic solid Use the value of Kspto 	The student will be able to: 2.D Make observations or collect data from representations of laboratory setups or results, while attending to precision where appropriate 2.F Explain how modifications to

 TRA-2.A Identify a reaction as acidbase, oxidation-reduction, or precipitation. Show details TRA-2.A.5 Precipitation reactions frequently involve mixing ions in aqueous solution to produce an insoluble or sparingly soluble ionic compound. All sodium, potassium, ammonium, and nitrate salts are soluble in water. Show details UNIT 7 Equilibrium TOPIC 7.11 Introduction to Solubility Equilibria SPQ-5 The dissolution of a salt is a reversible process that can be influenced by environmental factors such as pH or other dissolved ions. SPQ-5.A Calculate the solubility of a K_{sp}salt based on the value of for the salt. Show details SPQ-5.A.1 The dissolution of a salt is a reversible process whose extent can be described by K_{sp}, the solubility-product constant. Show details SPQ-5.A.2 The solubility of a substance can be calculated from the K_{sp}for the dissolution process. This relationship can also be used to predict the relative solubility of different substances. Show details SPQ-5.A.3 The solubility rules (see TRA-2.A.5) can be quantitatively related to K_{sp}, in which K_{sp}values >1 correspond to soluble salts. Show details TOPIC 7.12 Common-Ion Effect SPQ-5.B I dentify the solubility of a salt is a reversible process that can be influenced by environmental factors such as pH or other dissolution of a salt is a reversible process that can be influenced by environmental factors such as pH or other dissolution of a salt is a reversible process that can be influenced by environmental factors such as pH or other dissolution of a salt is a reversible process that can be influenced by environmental factors such as pH or other dissolution of a salt is a reversible process that can be influenced by environmental factors such as pH or other dissolution of a salt is a reversible process that can be influenced by environmental factors such as pH or other dissolution of a salt	 Calculate the concentration of one ion, knowing the other Determine whether a precipitate will form Calculate the water solubility of a compound Calculate the solubility of a compound Calculate the solubility of a compound in a solution of a common ion Determine which ion will precipitate first Calculate K for Dissolving a metal hydroxide in a strong acid Dissolving a precipitate in a complexing agent Write balanced, net ionic equations to explain why a precipitate dissolves in of Strong acid Ammonia or hydroxide solution Objectives: TRA-1.B Represent changes in matter with a balanced chemical or net ionic equation: a) for physical changes. b) for given information about the identity of the reactants and/or products. c) For ions in a given chemical reaction. TRA-2.A Identify a reaction as acid-base, oxidation-reduction, or precipitation. 	an experimental procedure will alter results. 4.D Explain the degree to which a model or representation describes the connection between particulate-level properties and macroscopic properties. 5.B Identify an appropriate theory, definition, or mathematical relationship to solve a problem.

	TOPIC 7.13 pH and Solubility SPQ-5 The dissolution of a salt is a reversible process that can be influenced by environmental factors such as pH or other dissolved ions. SPQ-5.C Identify the qualitative effect of changes in pH on the solubility of a salt. Show details SPQ-5.C.1 The solubility of a salt is pH sensitive when one of the constituent ions is a weak acid or base. These effects can be understood qualitatively using Le Châtelier's principle. Show details TOPIC 7.14 Free Energy of Dissolution SPQ-5 The dissolution of a salt is a reversible process that can be influenced by environmental factors such as pH or other dissolved ions. SPQ-5.D Explain the relationship between the solubility of a salt and changes in the enthalpy and entropy that occur in the dissolution process. Show details © 2013 The College Board, Advanced Placement <u>AP Frameworks</u>	 SPQ-5.A Calculate the solubility of a salt based on the value of K_{sp} for the salt. SPQ-5.B Identify the solubility of a salt, and/or the value of K_{sp} for the salt, based on the concentration of a common ion already present in solution. SPQ-5.C Identify the qualitative effect of changes in pH on the solubility of a salt. SPQ-5.D Explain the relationship between the solubility of a salt and changes in enthalpy and entropy that occur in the dissolution process. 	
<u>Thermodynamics</u>	AP: Chemistry (2019) AP: AP UNIT 7 Equilibrium TOPIC 7.14 Free Energy of Dissolution SPQ-5 The dissolution of a salt is a reversible process that can be influenced by environmental factors such as pH or other dissolved ions. SPQ-5.D Explain the relationship between the solubility of a salt and changes in the enthalpy and entropy that occur in the dissolution process. <u>Show details</u> SPQ-5.D.1 The free energy change $(\triangle G^\circ)$ for dissolution of a substance reflects a number of factors: the breaking of the intermolecular interactions that hold the solid together, the reorganization of the solvent around the dissolved	 Key Concepts 1. Deduce the sign of ΔS° for a process from consideration of randomness 2. Calculate ΔS° for a reaction using thermochemical data 3. Calculate ΔG° at any temperature, knowing ΔH° and ΔS° 	Students will be able to: 4.D Explain the degree to which a model or representation describes the connection between particulate-level properties and

the solvent. It is possible to estimate the sign and relative magnitude of the enthalpic and entropic contributions to each of these factors. However, making predictions for the total change in free energy of dissolution can be challenging due to the cancellations among the free energies associated with the three factors cited. Show details UNIT 9 Applications of Thermodynamics BIG IDEA 4 Energy ENE How does water flow uphill? How is the favorability of a chemical or physical transformation determined?free energies of formationproTOPIC 0.1 Introduction to Entropy5. Calculate ΔG° for a set of5. F8. Calculate ΔG° for a set of6. Calculate ΔG° for a set of	acroscopic operties. ^E Calculate, timate, or edict an known quantity m known
each of these factors. However, making predictions for the total change in free energy of dissolution can be challenging due to the cancellations among the free energies associated with the three factors cited.5. Calculate the temperature at which $\Delta G^\circ = 0$ Show details UNIT 9 Applications of Thermodynamics BIG IDEA 4 Energy ENE How does water flow uphill? How is the favorability of a chemical or physical transformation determined?5. Calculate the temperature at which $\Delta G^\circ = 0$ 5.F6. Calculate ΔG from ΔG° , knowing pressures and concentrations5. F7. Relate ΔG° to K98. Calculate ΔG° for a set of folder	timate, or edict an known quantity
energies associated with the three factors cited. Show details UNIT 9 Applications of Thermodynamics BIG IDEA 4 Energy ENE How does water flow uphill? How is the favorability of a chemical or physical transformation determined?6. Calculate ΔG from ΔG° , 	timate, or edict an known quantity
Show details $0.$ Calculate ΔG for a set ofUNIT 9 Applications of Thermodynamics $knowing pressures andBIG IDEA 4 Energy ENEconcentrationsHow does water flow uphill?row is the favorability of a chemical or physicaltransformation determined?7. Relate \Delta G^{\circ} for a set ofTOPIC 0.1 Introduction to Entropy8. Calculate \Delta G^{\circ} for a set of$	edict an known quantity
UNIT 9 Applications of ThermodynamicsKnowing pressures andpreBIG IDEA 4 Energy ENEconcentrationsunkHow does water flow uphill?fromHow is the favorability of a chemical or physical7. Relate ΔG° to Kquasisetransformation determined?8. Calculate ΔG° for a set offollowing pressures and	known quantity
BIG IDEA 4 Energy ENE How does water flow uphill? How is the favorability of a chemical or physical transformation determined?Concentrationsunix from 7 . Relate ΔG° to KTOPIC 9.1 Introduction to Entropy8. Calculate ΔG° for a set of follow	
How does water flow uphill?7. Relate ΔG° to Kqual seleHow is the favorability of a chemical or physical transformation determined?7. Relate ΔG° to Ksele followTOPIC 0.1 Introduction to Entropy8. Calculate ΔG° for a set offollow	
How is the favorability of a chemical or physical transformation determined?	antities by
TOPIC 0.1 Introduction to Entropy 8. Calculate AG° for a set of	lecting and
	lowing a logical
ENE 4 Some chemical or physical processes cannot occur counled reactions	mputational
without intervention.	thway and ending to
ENE-4.A Identify the sign and relative magnitude of the	ecision (e.g.,
entropy change associated with chemical or physical processor	rforming
Show details	nensional
ENE 4 A 1 Entropy increases when matter becomes more	alysis and ending to
dispersed. For example, the phase change from solid to	Inificant
liquid or from liquid to gas results in a dispersal of matter	ures).
as the individual particles become freer to move and 1. Spontaneous processes are generally occupy a larger volume. Similarly, for a gas, the	,
entropy increases when there is an increase in volume (at 2. Entropy, S	
constant temperature), and the gas molecules are able to	
	C Support a
	im with idence from
4. Standard free energy change,	presentations
	models at the
Show details par	rticulate level,
and concentration on reaction	ch as the
According to kinetic molecular meory (KMT), the	ucture of atoms d/or molecules.
distribution of kinetic energy among the particles of a gas broadens as the temperature increases. As a result, the	a/or molecules.
entropy of the system increases with an increase in 6. The free energy change and	
temperature. the equilibrium constant	
Show details 6.D) Provide
TOPIC 9.2 Absolute Entropy and Entropy Change7. Additivity of free energyreal	asoning to
	tify a claim ing chemical

ENE-4.B Calculate the entropy change for a chemical or physical process based on the absolute entropies of the species involved in the process.	Objectives:	or using mathematical justification.
Show details ENE-4.B.1 The entropy change for a process can be calculated from the absolute entropies of the species involved before and after the process occurs. Show details TOPIC 9.3 Gibbs Free Energy and Thermodynamic Favorability	ENE-4.A Identify the sign and relative magnitude of the entropy change associated with chemical or physical processes.	6.E Provide reasoning to justify a claim
ENE-4 Some chemical or physical processes cannot occur without intervention. ENE-4.C Explain whether a physical or chemical process is thermodynamically favored based on an evaluation of $\triangle G^{\circ}$. Show details ENE-4.C.1 The Gibbs free energy change for a chemical process in which all the reactants and products are present in a standard state (as pure substances, as solutions of 1.0 M concentration, or as gases at a pressure of 1.0 atm (or 1.0 bar)) is given the symbol $\triangle G^{\circ}$.	ENE-4.B Calculate the entropy change for a chemical or physical process based on the absolute entropies of the species involved in the process.	using connections between particulate and macroscopic scales or levels.
Show details ENE-4.C.2 The standard Gibbs free energy change for a chemical or physical process is a measure of thermodynamic favorability. Historically, the term "spontaneous" has been used to describe processes for which $\Delta G^{\circ} \Delta G^{\circ}$	ENE-4.C Explain whether a physical or chemical process is thermodynamically favored based on an evaluation of ΔG° .	
Show details ENE-4.C.3 The standard Gibbs free energy change for a physical or chemical process may also be determined from the standard Gibbs free energy of formation of the reactants and products. Show details ENE-4.C.4 In some cases, it is necessary to consider both enthalpy and entropy to determine if a process will be thermodynamically forward. The freezing of water and the	ENE-4.D Explain, in terms of kinetics, why a thermodynamically favored reaction might not occur at a measureable rate.	
thermodynamically favored. The freezing of water and the dissolution of sodium nitrate are examples of such phenomena. Show details ENE-4.C.5 Knowing the values of $\triangle H^\circ$ and $\triangle S^\circ$ for a process at a given temperature allows $\triangle G^\circ$ to be calculated directly. EQN : $\triangle G^\circ = \triangle H^\circ - T \triangle S^\circ$ Show details	SPQ-5.D Explain the relationship between the solubility of a salt and changes in the enthalpy and entropy that occur in the dissolution process.	
ENE-4.C.6 In general, the temperature conditions for a process to be thermodynamically favored $(\triangle G^{\circ} < 0)$ can be		

predicted from the signs of $\triangle H^\circ$ and $\triangle S^\circ$ as shown in the	ENE-5.A Explain whether a	
table below:	process is thermodynamically	
see the document for the table.	favored using the relationships	
In cases where $ riangle H^\circ < 0$ and $ riangle S^\circ > 0$, no calculation of $ riangle G^\circ$	between K, ΔG° , and T.	
is necessary to determine that the process is		
thermodynamically favored $(\triangle G^{\circ} < 0)$. In cases where		
$\triangle H^{\circ} > 0$ and $\triangle S^{\circ}$ no calculation of $\triangle G^{\circ}$ is necessary to		
determine that the process is thermodynamically unfavored	ENE-5.B Explain the relationship	
$(\triangle G^{\circ} > 0)$	between external sources of	
Show details	energy or coupled reactions and	
TOPIC 9.4 Thermodynamic and Kinetic Control	their ability to drive	
ENE-4 Some chemical or physical processes cannot occur	thermodynamically unfavorable	
without intervention.	processes.	
ENE-4.D Explain, in terms of kinetics, why a		
thermodynamically favored reaction might not occur at a		
measurable rate.		
Show details		
ENE-4.D.1 Many processes that are thermodynamically		
favored do not occur to any measurable extent, or they		
occur at extremely slow rates.		
Show details		
ENE-4.D.2 Processes that are thermodynamically favored,		
but do not proceed at a measurable rate, are under "kinetic		
control." High activation energy is a common reason for a		
process to be under kinetic control. The fact that a process		
does not proceed at a noticeable rate does not mean that the chemical system is at equilibrium. If a process is known		
to be thermodynamically favored, and yet does not occur at		
a measurable rate, it is reasonable to conclude that the		
process is under kinetic control.		
Show details		
TOPIC 9.5 Free Energy and Equilibrium		
ENE-5 The relationship between $\triangle G^{\circ}$ and K can be used to		
determine favorability of a chemical or physical		
transformation.		
ENE-5.A Explain whether a process is thermodynamically		
favored using the relationships between K, $\triangle G^{\circ}$, and T.		
Show details		
ENE-5.A.1 The phrase "thermodynamically favored"		
$(riangle G^\circ < 0)$ means that the products are favored at		
equilibrium (K $>$ 1).		
Show details		
ENE-5.A.2 The equilibrium constant is related to free		
energy by the equations		

Redox and	EQN : $K = e^{-\Delta G^{\circ}RT}$ and EQN : $\Delta G^{\circ} = RT \ln K$ Show details ENE-5.A.3 Connections between K and ΔG° can be made qualitatively through estimation. When ΔG° is near zero, the equilibrium constant will be close to 1. When ΔG° is much larger or much smaller than RT, the value of K deviates strongly from 1. Show details ENE-5.A.4 Processes with $\Delta G^{\circ} < 0$ favor products (i.e., K > 1) and those with $\Delta G^{\circ} > 0$ favor reactants (i.e., K < 1). Show details TOPIC 9.6 Coupled Reactions ENE-5 The relationship between ΔG° and K can be used to determine favorability of a chemical or physical transformation. ENE-5.B Explain the relationship between external sources of energy or coupled reactions and their ability to drive thermodynamically unfavorable processes. Show details ENE-5.B.1 An external source of energy can be used to make a thermodynamically unfavorable process occur. Examples include: a. Electrical energy to drive an electrolytic cell or charge a battery. b. Light to drive the overall conversion of carbon dioxide to glucose in photosynthesis. Show details ENE-5.B.2 A desired product can be formed by coupling a thermodynamically unfavorable reaction that produces that product to a favorable reaction (e.g., the conversion of ATP to ADP in biological systems). In the coupled system, the individual reactions share one or more common intermediates. The sum of the individual reactions produces an overall reaction that achieves the desired outcome and has $\Delta G^{\circ} < 0$. Show details @ 2013 The College Board, Advanced Placement <u>AP Frameworks</u>	Lecture Outline	The students will
electrochemisty	AP: AP SKILLS		be able to:

Models and Representations 1 Describe models and representations, including across scales. 1.A Describe the components of and quantitative information from models and representations that illustrate particulate-level properties only. 1.B Describe the components of and quantitative information from models and representations that illustrate	1.Oxidation States 2.Balancing Oxidation-Reduction Equations	2.F Explain how modifications to an experimental procedure will alter results.
both particulate-level and macroscopiclevel properties. Question and Method 2	 Voltaic cells Standard voltages 	
Determine scientific questions and methods. 2.A Identify a testable scientific question based on an observation, data, or a model.	5. Relations between E° , ΔG° and	5.B Identify an appropriate
2.B Formulate a hypothesis or predict the results of an experiment.	K	theory, definition, or mathematical
2.C Identify experimental procedures that are aligned to a scientific question (which may include a sketch of a lab	6. Electrolytic cells	relationship to solve a problem.
setup). 2.D Make observations or collect data from representations of laboratory setups or results, while attending to precision where appropriate.	7. Commercial cells	5.F Calculate,
2.E Identify or describe potential sources of experimental error. Representing Data and Phenomena 3		estimate, or predict an unknown quantity
Create representations or models of chemical phenomena. 3.A Represent chemical phenomena using appropriate	Key Concepts:	from known quantities by
graphing techniques, including correct scale and units. 3.B Represent chemical substances or phenomena with appropriate diagrams or models (e.g., electron	1. Determine oxidation numbers.	selecting and following a logical computational
configuration). 3.C Represent visually the relationship between the structures and interactions across multiple levels or scales	2. Balance half-equations and redox equations.	pathway and attending to
(e.g., particulate to macroscopic). Model Analysis 4	3. Draw a diagram for a voltaic cell, labeling the electrodes and diagramming current flow	precision (e.g., performing dimensional
Analyze and interpret models and representations on a single scale or across multiple scales. 4.A Explain chemical properties or phenomena (e.g., of	4. Use standard potentials to:	analysis and attending to significant
atoms or molecules) using given chemical theories, models, and representations.	Compare relative strengths of	figures).
4.B Explain whether a model is consistent with chemical theories.4.C Explain the connection between particulate-level and	oxidizing and reducing agents	
macroscopic properties of a substance using models and representations.	Calculate E and/or reaction spontaneity	6.D Provide reasoning to justify a claim

4.D Explain the degree to which a model or representation describes the connection between particulate-level	5. Relate E° to ΔG° and K	using chemical principles or laws
properties and macroscopic properties. Mathematical Routines 5 Solve problems using mathematical relationships	6. Use the Nernst equation to relate voltage to concentration	or using mathematical justification.
 5.A Identify quantities needed to solve a problem from given information (e.g., text, mathematical expressions, graphs, or tables). 5.B Identify an appropriate theory, definition, or mathematical relationship to solve a problem. 	7. Relate mass of product to charge, energy or current in electrolysis reactions	Justinoation.
5.C Explain the relationship between variables within an equation when one variable changes.5.D Identify information presented graphically to solve a	Objectives:	
problem.		
 5.E Determine a balanced chemical equation for a given chemical phenomenon. 5.F Calculate, estimate, or predict an unknown quantity from known quantities by selecting and following a logical computational pathway and attending to precision (e.g., performing dimensional analysis and attending to 	TRA-2.A Identify a reaction as acid-base, oxidation-reduction, or precipitation.	
significant figures). Argumentation 6 Develop an explanation or scientific argument. 6.A Make a scientific claim.	TRA-2.C Represent a balanced redox reaction equation using half- reactions.	
 6.B Support a claim with evidence from experimental data. 6.C Support a claim with evidence from representations or models at the particulate level, such as the structure of atoms and/or molecules. 6.D Provide reasoning to justify a claim using chemical principles or laws, or using mathematical justification. 6.E Provide reasoning to justify a claim using connections between particulate and macroscopic scales or levels. 6.F Explain the connection between experimental results 	ENE-6.A Explain the relationship between the physical components of an electrochemical cell and the overall operational principles of the cell.	
 and chemical concepts, processes, or theories. 6.G Explain how potential sources of experimental error may affect the experimental results. ENDURING UNDERSTANDINGS SCALE, PROPORTION, AND QUANTITY SPQ-1 The mole allows different units to be compared. SPQ-2 Chemical formulas identify substances by their unique combination of atoms. SPQ-3 Interactions between intermolecular forces 	ENE-6.B Explain whether an electrochemical cell is thermodynamically favored, based on its standard cell potential and the constituent half-reactions within the cell.	
influence the solubility and separation of mixtures. SPQ-4 When a substance changes into a new substance, or when its properties change, no mass is lost or gained.	ENE-6.C Explain the relationship between deviations from standard	

SPQ-5 The dissolution of a salt is a reversible process that can be influenced by environmental factors such as pH or other dissolved ions.	cell conditions and changes in the cell potential.	
STRUCTURE AND PROPERTIES SAP-1 Atoms and molecules can be identified by their electron distribution and energy. SAP-2 The periodic table shows patterns in electronic structure and trends in atomic properties. SAP-3 Atoms or ions bond due to interactions between them, forming molecules.	ENE-6.D Calculate the amount of charge flow based on changes in the amounts of reactants and products in an electrochemical	
TRANSFORMATIONS TRA-1 A substance that changes its properties, or that changes into a different substance, can be represented by chemical equations.	cell.	
 TRA-5 Many chemical reactions occur through a series of elementary reactions. These elementary reactions when combined form a chemical equation. TRA-6 Some reactions can occur in both forward and reverse directions, sometimes proceeding in each direction 		
simultaneously. ENERGY ENE-2 Changes in a substance's properties or change into a different substance requires an exchange of energy ENE 2. The approx exchanged in a chamical transformation		
ENE-3 The energy exchanged in a chemical transformation is required to break and form bonds. ENE-5 The relationship between $\triangle G^{\circ}$ and K can be used to determine favorability of a chemical or physical transformation.		
ENE-6 Electrical energy can be generated by chemical reactions. UNIT 4 Chemical Reactions TOPIC 4.7 Types of Chemical Reactions		
TRA-2 A substance can change into another substance through different processes, and the change itself can be classified by the sort of processes that produced it. TRA-2.A Identify a reaction as acidbase, oxidation- reduction, or precipitation.		
Show details TRA-2.A.2 Oxidation-reduction reactions involve transfer of one or more electrons between chemical species, as indicated by changes in oxidation numbers of the involved		
species. Combustion is an important subclass of oxidation- reduction reactions, in which a species reacts with oxygen gas. In the case of hydrocarbons, carbon dioxide and water are products of complete combustion.		

Show details

TRA-2.A.3 In a redox reaction, electrons are transferred from the species that is oxidized to the species that is reduced.

Show details

TRA-2.A.4 Oxidation numbers may be assigned to each of the atoms in the reactants and products; this is often an effective way to identify the oxidized and reduced species in a redox reaction.

Show details

TOPIC 4.9 Oxidation-Reduction(Redox) Reactions TRA-2 A substance can change into another substance through different processes, and the change itself can be classified by the sort of processes that produced it. TRA-2.C Represent a balanced redox reaction equation using half-reactions.

Show details

TRA-2.C.1 Balanced chemical equations for redox reactions can be constructed from half-reactions.

Show details

UNIT 9 Applications of Thermodynamics BIG IDEA 4 Energy ENE

How is electrical energy generated using chemical reactions?

TOPIC 9.7 Galvanic (Voltaic) and Electrolytic Cells ENE-6 Electrical energy can be generated by chemical reactions.

ENE-6.A Explain the relationship between the physical components of an electrochemical cell and the overall operational principles of the cell.

Show details

ENE-6.A.1 Each component of an electrochemical cell (electrodes, solutions in the half-cells, salt bridge, voltage/current measuring device) plays a specific role in the overall functioning of the cell. The operational characteristics of the cell (galvanic vs. electrolytic, direction of electron flow, reactions occurring in each half-cell, change in electrode mass, evolution of a gas at an electrode, ion flow through the salt bridge) can be described at both the macroscopic and particulate levels. <u>Show details</u>

ENE-6.A.2 Galvanic, sometimes called voltaic, cells involve a thermodynamically favored reaction, whereas electrolytic cells involve a thermodynamically unfavored reaction. Visual representations of galvanic and electrolytic cells are tools of analysis to identify where half-reactions occur and in what direction current flows.

Show details

ENE-6.A.3 For all electrochemical cells, oxidation occurs at the anode and reduction occurs at the cathode. LABELING AN ELECTRODE AS POSITIVE OR NEGATIVE WILL NOT BE ASSESSED ON THE AP EXAM. Rationale: Sign conventions vary depending on the type of electrochemical cell, even though oxidation always occurs at the anode.

Show details

TOPIC 9.8 Cell Potential and Free Energy ENE-6 Electrical energy can be generated by chemical reactions.

ENE-6.B Explain whether an electrochemical cell is thermodynamically favored, based on its standard cell potential and the constituent half-reactions within the cell.

Show details

ENE-6.B.1 Electrochemistry encompasses the study of redox reactions that occur within electrochemical cells. The reactions are either thermodynamically favored (resulting in a positive voltage) or thermodynamically unfavored (resulting in a negative voltage and requiring an externally applied potential for the reaction to proceed).

Show details

ENE-6.B.2 The standard cell potential of electrochemical cells can be calculated by identifying the oxidation and reduction half-reactions and their respective standard reduction potentials.

Show details

ENE-6.B.3 $\triangle G^{\circ}$ (standard Gibbs free energy change) is proportional to the negative of the cell potential for the redox reaction from which it is constructed. Thus, a cell with a positive E°involves a thermodynamically favored reaction, and a cell with a negative E°involves a thermodynamically unfavored reaction. EQN : $\triangle G^{\circ} = -nFE^{\circ}$ Show details

TOPIC 9.9 Cell Potential Under Nonstandard Conditions ENE-6 Electrical energy can be generated by chemical reactions.

ENE-6.C Explain the relationship between deviations from standard cell conditions and changes in the cell potential. Show details

ENE-6.C.1 In a real system under nonstandard conditions, the cell potential will vary depending on the concentrations of the active species. The cell potential is a driving force

toward equilibrium; the farther the reaction is from equilibrium, the greater the magnitude of the cell potential. ENE-6.C.2 Equilibrium arguments such as Le Châtelier's principle do not apply to electrochemical systems, because the systems are not in equilibrium.

Show details

ENE-6.C.3 The standard cell potential E^o corresponds to the standard conditions of Q = 1. As the system approaches equilibrium, the magnitude (i.e., absolute value) of the cell potential decreases, reaching zero at equilibrium (when Q = K). Deviations from standard conditions that take the cell further from equilibrium than Q = 1 will increase the magnitude of the cell potential relative to E° . Deviations from standard conditions that take the cell closer to equilibrium than Q = 1 will decrease the magnitude of the cell potential relative to E° . In concentration cells, the direction of spontaneous electron flow can be determined by considering the direction needed to reach equilibrium. Show details

ENE-6.C.4 Algorithmic calculations using the Nernst equation are insufficient to demonstrate an understanding of electrochemical cells under nonstandard conditions. However, students should qualitatively understand the effects of concentration on cell potential and use conceptual reasoning, including the qualitative use of the Nernst equation: $EQN : E = E^{\circ} - (RT/nF) \ln Q_{to solve}$ problems.

Show details

TOPIC 9.10 Electrolysis and Faraday's Law ENE-6 Electrical energy can be generated by chemical reactions.

ENE-6.D Calculate the amount of charge flow based on changes in the amounts of reactants and products in an electrochemical cell.

Show details

ENE-6.D.1 Faraday's laws can be used to determine the stoichiometry of the redox reaction occurring in an electrochemical cell with respect to the following:

a. Number of electrons transferred

b. Mass of material deposited on or removed from an electrode

c. Current

d. Time elapsed

e. Charge of ionic species

EQN: I = q/t

<u>Show details</u> © 2013 The College Board, Advanced Placement	
<u>AP Frameworks</u>	

C 2022 Faria Education Group Ltd. All rights reserved. Privacy Policy