Honors Pre-Calculus
Diocese of Greensburg Curriculum

Unit	Standards	Content	Skills
Coordinate Geometry	NCTM: Mathematics NCTM: Grades 9-12 Number \& Operations Understand numbers, ways of representing numbers, relationships among numbers, and number systems compare and contrast the properties of numbers and number systems, including the rational and real numbers, and understand complex numbers as solutions to quadratic equations that do not have real solutions; Compute fluently and make reasonable estimates develop fluency in operations with real numbers, vectors, and matrices, using mental computation or paper-and-pencil calculations for simple cases and technology for morecomplicated cases. judge the reasonableness of numerical computations and their results. Algebra Represent and analyze mathematical situations and structures using algebraic symbols understand the meaning of equivalent forms of expressions, equations, inequalities, and relations; write equivalent forms of equations, inequalities, and systems of equations and solve them with fluency-mentally or with paper and pencil in simple cases and using technology in all cases;	- Interval and Set Notation - Imaginary Numbers - Real Numbers, Exponents, and Radicals ($x^{\wedge}(\mathrm{a} / \mathrm{b})$) Solving Rational Equations \& Inequalities - Solving Radical Equations \& Inequalities - Factoring - Quadratic Formula/Completing the Square - Inequalities - Absolute Value Inequalities - Distance and Midpoint - Linear Functions - Variation - Circles - Completing the Square	Students will be able to: Knowledge Define a function Comprehension - Calculate Distance and Midpoint - Review Intercepts - Solve problems that involve Real Numbers, Exponents, and Radicals ($x^{\wedge}(a / b)$) - Solve Algebraic Rationals - Solve Equations - Solve Factoring Problems - Solve Inequalities - Solve Absolute Value Inequalities

	Understand patterns, relations, and functions generalize patterns using explicitly defined and recursively defined functions; analyze functions of one variable by investigating rates of change, intercepts, zeros, asymptotes, and local and global behavior; understand and perform transformations such as arithmetically combining, composing, and inverting commonly used functions, using technology to perform such operations on more-complicated symbolic expressions	Predict grans composite functions understand and compare the properties of classes of functions, including exponential, polynomial, rational, logarithmic, and periodic functions; Analyze change in various contexts approximate and interpret rates of change from graphical and numerical data. Geometry Apply transformations and use symmetry to analyze mathematical situations understand and represent translations, reflections, rotations, and dilations of objects in the plane by using sketches, coordinates, vectors, function notation, and matrices; use various representations to help understand the effects of simple transformations and their compositions. © Copyright 2010. National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved.	
Trigonometry			

HSF-TF.A. Extend the domain of

 trigonometric functions using the unit circle.HSF-TF.A.3. (+) Use special triangles to determine geometrically the values of sine, cosine, tangent for $\mathrm{p} / 3, \mathrm{p} / 4$ and $\mathrm{p} / 6$, and use the unit circle to express the values of sine, cosines, and tangent for $x, p+x$, and $2 p-x$ in terms of their values for x, where x is any real number.

CCSS: HS: Geometry

Similarity, Right Triangles, \&

 TrigonometryHSG-SRT.C. Define trigonometric ratios and solve problems involving right triangles

HSG-SRT.C.6. Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles.

HSG-SRT.C.7. Explain and use the relationship between the sine and cosine of complementary angles.

HSG-SRT.C.8. Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.

HSG-SRT.D. Apply trigonometry to general triangles

HSG-SRT.D.9. (+) Derive the formula A = 1/2 ab sin© for the area of a triangle by drawing an auxiliary line from a vertex perpendicular to the opposite side.

HSG-SRT.D.10. (+) Prove the Laws of Sines and Cosines and use them to solve problems.

HSG-SRT.D.11. (+) Understand and apply the Law of Sines and the Law of Cosines to find unknown measurements in right and non-right triangles (e.g., surveying problems, resultant forces).

- Coterminal and Reference Angles
- Special Right Triangles
- ASTC
- Quadrantal Angles
- Inverse Trig Functions
- Oblique Triangles
- Law of Sines and Law of Cosines

Knowledge

State and demonstrate understanding of the trig ratios

Comprehension

Understand the difference between inverse trig functions and trig inverses

Application

Compute the cosecant, secant, and cotangent.

Analysis

Determine what coefficients and constants transform the functions

Solve oblique triangles

Synthesis

Construct the law of sines and cosines

	NCTM: Mathematics NCTM: Grades 9-12 Geometry Analyze characteristics and properties of two- and three-dimensional geometric shapes and develop mathematical arguments about geometric relationships use trigonometric relationships to determine lengths and angle measures. © Copyright 2010. National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved.		
Midterm			
Trigonometry with Radian Measure	CCSS: Mathematics CCSS: HS: Functions Trigonometric Functions HSF-TF.A. Extend the domain of trigonometric functions using the unit circle. HSF-TF.A.1. Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle. HSF-TF.A.2. Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle. HSF-TF.A.4. (+) Use the unit circle to explain symmetry (odd and even) and periodicity of trigonometric functions. HSF-TF.C. Prove and apply trigonometric identities.	- Unit Circle - Radian Measure - Arc Length - Area of Sector - Linear and Angular Velocity - Graphing Trig Functions with amplitude, change in period, vertical shift, and phase shift - Inverse Trigonometric Functions	Students will be able to: Knowledge Define a radian Comprehension Memorize the unit circle and demonstrate understanding Demonstrate understanding of the difference between inverse trig functions and trig inverses

	HSF-TF.C.8. Prove the Pythagorean identity $\sin ^{2}(?)+\cos ^{2}(?)=1$ and use it to calculate trigonometric ratios. CCSS: HS: Geometry Circles HSG-C.B. Find arc lengths and areas of sectors of circles HSG-C.B.5. Derive using similarity the fact that the length of the arc intercepted by an angle is proportional to the radius, and define the radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector. © Copyright 2010. National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved.		Application Apply sine, cosine, and tangent functions to the unit circle Compute the cosecant, secant, and cotangent. Analysis Construct graphs of all trig and inverse of trig functions Determine what coefficients and constants transform the functions Synthesis
Trigonometric Identities	CCSS: Mathematics CCSS: HS: Algebra Seeing Structure in Expressions HSA-SSE.A. Interpret the structure of expressions. HSA-SSE.A.2. Use the structure of an expression to identify ways to rewrite it. HSA-SSE.B. Write expressions in equivalent forms to solve problems. HSA-SSE.B.3. Choose and produce an equivalent form of an expression to reveal and	- Factoring expressions that contain trig functions - Verifications/simplifying trig expressions - Sum \& Difference formulas - Double Angle Formula - Half Angle Formula - Product-Sum and SumProduct Formulas - Harmonic Motion	The students will be able to: Knowledge State the trigonometric identities Application:

	explain properties of the quantity represented by the expression. CCSS: HS: Functions Trigonometric Functions HSF-TF.C. Prove and apply trigonometric identities. HSF-TF.C.8. Prove the Pythagorean identity $\sin ^{2}(?)+\cos ^{2}(?)=1$ and use it to calculate trigonometric ratios. HSF-TF.C.9. (+) Prove the addition and subtraction formulas for sine, cosine, and tangent and use them to solve problems. © Copyright 2010. National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved.		Use factoring techniques to factor trigonometric expressions Simplify trig expressions Use sum/difference, double, half, product-sum and sum-product formulas to simplify \& solve problems Analysis Determine why the formula are not simply $(\sin (a+b)$ is not $\sin (a)+\sin (b))$ Synthesis Compute sum and difference, double angle, and half angle formulae Verify trigonometric equations Evaluation Evaluate harmonic motion as it applies to sound, light, and other real life events
Logs and Exponents	CCSS: Mathematics CCSS: HS: Functions	Logarithms and Exponents	Knowledge

| | Interpreting Functions
 HSF-IF.B. Interpret functions that arise in
 applications in terms of the context.
 HSF-IF.B.4. For a function that models a
 relationship between two quantities, interpret
 key features of graphs and tables in terms of
 the quantities, and sketch graphs showing key
 features given a verbal description of the
 relationship. | - Graphing | - Compound Interest |
| :--- | :--- | :--- | :--- |\quad| State the value of e. |
| :--- |
| |

	HSG-GPE.A. Translate between the geometric description and the equation for a conic section HSG-GPE.A.2. Derive the equation of a parabola given a focus and directrix. HSG-GPE.A.3. (+) Derive the equations of ellipses and hyperbolas given two foci for the ellipse, and two directrices of a hyperbola. © Copyright 2010. National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved.	-Circles	-Ellipses

\(\left.$$
\begin{array}{|l|l|l|l|}\hline & \begin{array}{l}\text { limit exists and is a real number, then the } \\
\text { common notation is } \lim \mathrm{f} \rightarrow \mathrm{c}(\mathrm{x})=\mathrm{R}\end{array} & \text {-Limits at Infinity } \\
\begin{array}{l}\text { LIM-1.B.1 A limit can be expressed in multiple } \\
\text { ways, including graphically, numerically, and } \\
\text { analytically }\end{array} & \begin{array}{l}\text { - Horizontal Asymptotes } \\
\text { Vertical Asymptotes }\end{array} & \begin{array}{l}\text { Solve limit problems from } \\
\text { graphs and data tables on } \\
\text { a calculator. }\end{array} \\
\begin{array}{l}\text { TOPIC 1.3 Estimating Limit Values from } \\
\text { Graphs } \\
\text { LIM-1 Reasoning with definitions, theorems, } \\
\text { and properties can be used to justify claims } \\
\text { about limits. } \\
\text { LIM-1.C.1 The concept of a limit includes one } \\
\text { sided limits. }\end{array} & \begin{array}{l}\text { algebraically. }\end{array} \\
\begin{array}{l}\text { © 2013 The College Board, Advanced } \\
\text { Placement }\end{array} & \begin{array}{l}\text { AP Frameworks }\end{array} & \begin{array}{l}\text { Analysis } \\
\text { Calculate the first } \\
\text { derivative of a function } \\
\text { using the definition of } \\
\text { derivative (limit as } h \\
\text { approaches zero). }\end{array}
$$

Evaluation\end{array}\right]\)| Synthesis |
| :--- |

